

Grade 6 Next Generation Science Standards

Course Pacing Guide

Narrative and Rationale: The Next Generation Science Standards promote a vision for science education in which students learn science and engineering by doing science and engineering—like real-life scientists and engineers.

The Mi-STAR Unit Progression Model (UPM) lays out a path to student mastery of the middle school NGSS grade-band, through 22 bundles that are in development to become Mi-STAR units. The dimensions of NGSS are sequenced across each year and between years to create a coherent progression that builds on students' prior knowledge and skills. Each bundle in the sequence is connected to a 21st century theme that will serve as the basis for a Unit Challenge—a problem or issue that the students attempt to solve or address throughout the course of a unit.

Bundle 6.1 Protecting our Communities Water through Land Use	Bundle 6.2 Investigating and Modeling Body Systems	Bundle 6.3 Chemical Processes in Organism Digestion	Bundle 6.4 Forces and Motion	Bundle 6.5 Plant Growth	Bundle 6.6 Managing Invasive Species to Protect Ecosystem Interactions	Bundle 6.7 Cycling of Matter and Energy through Food Webs
~ 5 weeks	~ 6 weeks	~ 6 weeks	~6 weeks	~ 5 weeks	~5 weeks	~5 weeks
Pearson Resources Water p. 8-9 Water p. 118-129 Forces p. 136-141	Pearson Resources Cells p. 4-21	Pearson Resources Cells p.44-55 Chemistry p.5-9, 80- 129, 165-181, 213-229	Pearson Resources Forces p.4-7 Forces p.32-35 Forces p.48-51	Pearson Resources Cells p.86-91 Ecology p.4-9 Ecology p.15-17	Pearson Resources Ecology p. 4-34 Ecology p.92-159	Pearson Resources Ecology p. 42-55
Bundle Question	Bundle Question	Bundle Question	Bundle Question	Bundle Question	Bundle Question	Bundle Question
How does human development affect how water moves through our community?	How does a mystery pathogen make people sick and how can we come up with a treatment plan?	How do we choose foods to address digestion problems?	How can we design a case that protects a cell phone from breaking?	How can we maintain the biggest supply of fresh food in places where plants do not naturally grow?	What can cause the number of organisms in an ecosystem to increase, decrease, or disappear over time? How and why do ecosystems change, and why is it important to us?	How can we use old food to make new food?

NGSS Standards	NGSS Standards	NGSS Standards	NGSS Standards	NGSS Standards	NGSS Standards	NGSS Standards
MS-ESS2-4 Develop a	MS-LS1-1 Conduct an	MS-LS1-7 Develop a	MS-PS2-1 Apply	MS-LS1-5 Construct a	MS-LS2-1 Analyze and	MS-LS1-6 Construct a
model to describe the	investigation to provide	model to describe how	Newton's Third Law to	scientific explanation	interpret data to provide	scientific explanation
cycling of water through	evidence that living	food is rearranged	design a solution to a	based on evidence for	evidence for the effects	based on evidence for
Earth's systems driven by	things are made of cells;	through chemical	problem involving the	how environmental and	of resource availability	the role of
energy from the sun and	either one cell or many	reactions forming new	motion of two colliding	genetic factors influence	on organisms and	photosynthesis in the
the force of gravity.	different numbers and	molecules that support	objects.	the growth of	populations of organisms	cycling of matter and
	types of cells.	growth and/or release		organisms.	in an ecosystem.	flow of energy into and
MS-PS1-4 Develop a		energy as this matter	MS-PS2-2 Plan an			out of organisms.
model that predicts and	MS-LS1-2 Develop and	moves through an	investigation to provide	MS-LS2-1 Analyze and	MS-LS2-2 Construct an	
describes changes in	use a model to describe	organism.	evidence that the change	interpret data to	explanation that predicts	MS-LS2-3 Develop a
particle motion,	the function of a cell as a		in an object's motion	provide evidence for the	patterns of interactions	model to describe the
temperature, and state	whole and ways parts of	MS-PS1-2 Analyze and	depends on the sum of	effects of resource	among organisms across	cycling of matter and
of a pure substance	cells contribute to the	interpret data on the	the forces on the object	availability on organisms	multiple ecosystems. *	flow of energy among
when thermal energy is	function.	properties of substances	and the mass of the	and populations of		living and nonliving parts
added or removed.		before and after the	object.	organisms in an	MS-LS2-4 Construct an	of an ecosystem.
	MS-LS1-3 Use argument	substances interact to		ecosystem.	argument supported by	
MS-ETS1-1 Define the	supported by evidence	determine if a chemical	MS-ETS1-1 Define the		empirical evidence that	
criteria and constraints	for how the body is a	reaction has occurred.	criteria and constraints		changes to physical or	
of a design problem with	system of interacting		of a design problem with		biological components of	
sufficient precision to	subsystems composed of	MS-PS1-5 Develop and	sufficient precision to		an ecosystem affect	
ensure a successful	groups of cells.	use a model to describe	ensure a successful		populations.	
solution, taking into		how the total number of	solution, taking into			
account relevant	MS-ETS1-3 Analyze data	atoms does not change	account relevant		MS-ETS1-2 Evaluate	
scientific principles and	from tests to determine	in a chemical reaction	scientific principles and		competing design	
potential impacts on	similarities and	and thus mass is	potential impacts on		solutions using a	
people and the natural	differences among	conserved.	people and the natural		systematic process to	
environment that may	several design solutions		environment that may		determine how well they	
limit possible solutions.	to identify the best	MS-PS1-6 Undertake a	limit possible solutions.		meet the criteria and	
	characteristics of each	design project to			constraints of the	
	that can be combined	construct, test, and			problem.	
	into a new solution to	modify a device that				
	better meet the criteria	either releases or				
	for success.	absorbs thermal energy				
		by chemical processes.*				